• Singh, S., Kumar, V. & Wani, A. Toxicity, monitoring and biodegradation of the fungicide carbendazim. Environ. Chem. Lett. 14, 317–329 (2016).

    CAS  Article  Google Scholar 

  • Merel, S., Benzing, S., Gleiser, C., Di Napoli-Davis, G. & Zwiener, C. Occurrence and overlooked sources of the biocide carbendazim in wastewater and surface water. Environ. Pollut. 239, 512–521 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Owumi, S. E., Nowozo, S. O. & Najophe, E. S. Quercetin abates induction of hepaticand renal oxidative damage, inflammation, and apoptosis in carbendazim-treated rats. Toxicol. Res. Appl. 3, 1–8 (2019).

    Google Scholar 

  • Liu, S., Yang, R., Chen, H. & Fu, Q. Residue and degradation of carbendazim in rice and soil. J. Agro-Environ. Sci. 31, 357–361 (2011).

    CAS  Google Scholar 

  • Mohapatra, S. S. L. Residue level and dissipation of carbendazim in/on pomegranate fruits and soil. Environ. Monit. Assess. 188(7), 406. https://doi.org/10.1007/s10661-016-5404-2 (2016).

    MathSciNet  CAS  Article  PubMed  Google Scholar 

  • Pourreza, N., Rastegarzadeh, S. & Larki, A. Determination of fungicide carbendazim in water and soil samples using dispersive liquid-liquid microextraction and microvolume UV-vis spectrophotometry. Talanta 134, 24–29 (2015).

    CAS  PubMed  Article  Google Scholar 

  • Arya, R. & Sharma, A. K. Bioremediation of carbendazim, a benzimidazole fungicide using Brevibacillus borstelensis and Streptomyces albogriseolus together. Curr. Pharm. Biotechnol. 17, 185–189 (2015).

    PubMed  Article  CAS  Google Scholar 

  • Olayemi, O. A. Comparative toxicity of two different pesticides on the skin of Japanese quail (Cortunix japonica). World Vet. J. 5, 13–18 (2015).

    Article  Google Scholar 

  • Lutz, P. Benzimidazole and its derivatives- from fungicides to designer drug. A new occupational and environmental hazard. Medycyna Pracy 63(4), 505–513 (2012).

    PubMed  Google Scholar 

  • Dikić, D. et al. Carbendazim impends hepatic necrosis when combined with imazalil or cypermethrin. Basic Clin. Pharmacol. Toxicol. 110(5), 433–440 (2012).

    PubMed  Article  CAS  Google Scholar 

  • Catalgol, S., Catalgol, B. & Alpertunga, B. Involvement of main oxidative stress mechanisms in the toxicity of benomyl and carbendazim in rats. Istanbul Ecz. Fak. Derg. J Fac. Pharm. Istanbul 43, 103–120 (2013).

    Google Scholar 

  • Ozden, S. & Alpertunga, B. Effects of methiocarb on lipid peroxidation and glutathione level in rat tissues. Drug Chem Toxicol. 33, 50–54 (2009).

    Article  CAS  Google Scholar 

  • Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine 5th edn, 268–340 (University Press, 2007).

    Google Scholar 

  • Hassanen, E. I., Khalaf, A. A., Tohami, A. F., Mohammed, E. R. & Farroh, K. Y. Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. Int. J. Nanomed. 14, 4723–4739 (2019).

    CAS  Article  Google Scholar 

  • Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019).

    CAS  Article  Google Scholar 

  • Hassanen, E. I. et al. Pomegranate juice diminishes the mitochondrial-dependent cell death and NF-ĸB signaling pathway induced by Copper oxide nanoparticles on the liver and kidneys of rats. Int. J. Nanomed. 14, 8905–8922 (2019).

    CAS  Article  Google Scholar 

  • Jesus, S. et al. Chitosan nanoparticles: Shedding light on immunotoxicity and hemocompatibility. Front. Bioeng. Biotechnol. 8, 100 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • Sosnik, A., Neves, J. D. & Sarmento, B. Mucoadhesive polymers in the design of nano-drug delivery systems for administration by non-parenteral routes: A review. Prog. Polym. Sci. 39(12), 2030–2075 (2014).

    CAS  Article  Google Scholar 

  • Ali, A. & Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol 109, 273–286 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Baghdan, E. et al. Lipid coated chitosan-DNA nanoparticles for enhanced gene delivery. Int. J. Pharmaceut 535, 473–479 (2018).

    CAS  Article  Google Scholar 

  • Divya, K., Vijayan, S., George, T. K. & Jisha, M. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 18(2), 221–230 (2017).

    CAS  Article  Google Scholar 

  • Kashyap, P. L., Xiang, X. & Heiden, P. Chitosan nanoparticle-based delivery system for sustainable agriculture. Int. J. Biolog. Macromol. 77, 36–51 (2015).

    CAS  Article  Google Scholar 

  • Agarwal, M. et al. Preparation of Chitosan nanoparticles and their in-vitro characterization. Int. J. Life Sci. Sci. Res. 4(2), 1713–1720 (2018).

    Google Scholar 

  • Farag, A., Ebrahim, H., ElMazoudy, R. & Kadous, E. Developmental toxicity of fungicide carbendazim in female mice. Birth Defects Res. B Dev. Reprod. Toxicol. 92(2), 122–130 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Ebedy, Y. A., Hassanen, E. I., Hussien, A. M., Ibrahim, M. A. & Elshazly, M. O. Neurobehavioral toxicity induced by carbendazim in rats and the role of iNOS, Cox-2, and NF-κB signalling pathway. Neurochem. Res. https://doi.org/10.1007/s11064-022-03581-5 (2022).

    Article  PubMed  Google Scholar 

  • Hanafi, N. Role of chitosan nanoparticles in targeting ehrlich tumor cells transplanted in albino mice. Int. J. Res. Biol. Sci. 2(1), 6–17 (2012).

    Google Scholar 

  • Bancroft, J. D., & Layton, C (2013). in Bancroft s Theory and practice of histological techniques (ed Christopher Layton and John D. Bancroft S. Kim suvarna) 173–186 (Churchill Living stone).

  • Khalaf, A. A. et al. Rosmarinic acid attenuates chromium-induced hepatic and renal oxidative damage and DNA damage in rats. J. Biochem. Mol. Toxicol. 34(11), e22579 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Hassanen, E. I., Korany, R. M. S. & Bakeer, A. M. Cisplatin-conjugated gold nanoparticles-based drug delivery system for targeting hepatic tumors. J. Biochem. Mol. Toxicol. 35, e22722. https://doi.org/10.1002/jbt.22722 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Jing-Liang, X. et al. Isolation and characterization of a carbendazim-degrading Rhodococcus sp. djl-6. Curr. Microbiol. 53, 72–76 (2006).

    PubMed  Article  CAS  Google Scholar 

  • Nowzo, S. O., Ozegbe, P. C. & Olasehinde, O. Carbendazim alters kidney morphology, kidney function tests, tissue markers of oxidative stress and serum micro-elements in rats fed protein-energy malnourished diet. Int. J. Biol. Chem. Sci 11(3), 1046–1055 (2017).

    Article  CAS  Google Scholar 

  • Mustafa, I. F. & Hussein, M. Z. Synthesis and technology of nanoemulsion-based pesticide formulation. Nanomaterials 10(8), 1608. https://doi.org/10.3390/nano10081608 (2020).

    CAS  Article  PubMed Central  Google Scholar 

  • Bandara, S., Du, H., Carson, L., Bradford, D. & Kommalapati, R. Agricultural and biomedical applications of Chitosan-based nanomaterials. Nanomaterials 10(10), 1903. https://doi.org/10.3390/nano10101903 (2020).

    CAS  Article  PubMed Central  Google Scholar 

  • Divya, K., Smitha, V. & Jisha, M. S. Antifungal, antioxidant and cytotoxic activities of chitosan nanoparticles and its use as an edible coating on vegetables. Int. J. Biol. Macromol. 114, 572–577 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Pizzino, G. et al. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. https://doi.org/10.1155/2017/8416763 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Noeman, S. A., Hamooda, H. E. & Baalash, A. A. Biochemical study of oxidative stress markers in the liver, kidney and heart of high fat diet induced obesity in rats. Diabetol. Metab. Syndr. 3, 17. https://doi.org/10.1186/1758-5996-3-17 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Weiss, S. L. & Deutschman, C. S. Elevated malondialdehyde levels in sepsis – something to “stress” about?. Crit. Care 18, 125. https://doi.org/10.1186/cc13786 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubio, C. P., Hernández-Ruiz, J., Martinez-Subiela, S., Tvarijonaviciute, A. & Ceron, J. J. Spectrophotometric assays for total antioxidant capacity (TAC) in dog serum: An update. BMC Vet. Res. 12, 166. https://doi.org/10.1186/s12917-016-0792-7 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Weydert, C. J. & Cullen, J. J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protocols 5(1), 51–66 (2010).

    CAS  PubMed  Article  Google Scholar 

  • Forman, H. J., Zhang, H. & Rinna, A. Glutathione: Overview of its protective roles, measurement, and biosynthesis. Mol. Aspects Med. 30, 1–12 (2009).

    CAS  PubMed  Article  Google Scholar 

  • Cooper, A. J. L., Pinto, J. T. & Callery, P. S. Reversible and irreversible protein glutathionylation: Biological and clinical aspects. Med. Sci. Monit. 7(7), 891–910 (2011).

    CAS  Google Scholar 

  • Metwally, S. A., Abdel-latif, H. A., Fawzy, H. M. & Hamdy, A. The protective effect of linseed oil against carbendazim induced testicular toxicity in rats. Eur. J. Sci. Res. 49(2), 208–224 (2011).

    Google Scholar 

  • Sakr, S. A. & Shalaby, S. Y. Carbendazim-induced testicular damage and oxidative stress in albino rats: Ameliorative effect of licorice aqueous extract. Toxicol. Ind. Health 30(3), 259–267 (2014).

    CAS  PubMed  Article  Google Scholar 

  • Gandhi, S. & Abramov, A. Y. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev https://doi.org/10.1155/2012/428010 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdollahi, M., Ranjbar, A., Shadnia, S., Nikfar, S. & Rezaie, A. Pesticides and oxidative. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48, 749–762 (2004).

    Google Scholar 

  • Hroudová, J., Singh, N. & Fišar, Z. Mitochondrial dysfunctions in neurodegenerative diseases: Relevance to Alzheimer’s disease. Biomed. Res. Int. https://doi.org/10.1155/2014/175062 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerra-Castellano, A., Díaz-Moreno, I., Velázquez-Campoy, A., De la Rosa, M. A. & Díaz-Quintana, A. Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. Biochim. Biophys. Acta 1857, 387–395 (2016).

    CAS  PubMed  Article  Google Scholar 

  • Ow, Y. P., Green, D. R., Hao, Z. & Mak, T. W. Cytochrome c: Functions beyond respiration. Nat. Rev. Mol. Cell Biol. 9, 532–542 (2008).

    CAS  PubMed  Article  Google Scholar 

  • Guerra-Castellano, et al. Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc. Natl. Acad. Sci. 115, 201806833 (2018).

    Article  CAS  Google Scholar 

  • Mitsuishi, Y. et al. Nrf2 redirects glucose and glutamine into anabolic pathways in metabolic reprogramming. Cancer Cell 22(1), 66–79 (2012).

    CAS  PubMed  Article  Google Scholar 

  • Sajadimajd, S. & Khazaei, M. Oxidative stress and cancer: The role of Nrf2. Curr. Cancer Drug Targets 18(6), 538–557 (2018).

    CAS  PubMed  Article  Google Scholar 

  • Taguchi, K. & Yamamato, M. The KEAP1–NRF2 system in cancer. Front. Oncol. 7, 85. https://doi.org/10.3389/fonc.2017.00085 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • Taguchi, K., Motohashi, H. & Yamamoto, M. Molecular mechanisms of the Keap1–Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2), 123–140 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Kaspar, J. W., Niture, S. K. & Jaiswal, A. K. Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med 47, 1304–1309 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Circu, M. L. & Aw, T. Y. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med 48, 749–762 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Khan, M. R., Badar, I. & Siddiquah, A. Prevention of hepatorenal toxicity with Sonchus asper in gentamicin treated rats. BMC Complement Altern. Med. 11, 113. https://doi.org/10.1186/1472-6882-11-113 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, J. et al. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development. Toxicol. In Vitro 29(7), 1473–1481 (2015).

    CAS  PubMed  Article  Google Scholar 

  • Morciano, G. et al. Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J. Mol. Cell Cardiol. 78, 142–153 (2015).

    CAS  PubMed  Article  Google Scholar 

  • Wu, J. Q., Kosten, T. R. & Zhang, X. Y. Free radicals, antioxidant defense system, and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 200–206 (2013).

    CAS  PubMed  Article  Google Scholar 

  • Brentnall, M., Rodriguez-Menocal, L., De Guevara, R. L., Cepero, E. & Boise, L. H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol. 14, 32 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tripathi, P., Tripathi, P., Kashyap, L. & Singh, V. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Microbiol. 51(3), 443–452 (2007).

    CAS  PubMed  Article  Google Scholar 

  • Raposo, C. et al. Sildenafil (Viagra) protective effects on neuroinflammation: The role of iNOS/NO system in an inflammatory demyelination model. Mediators Inflamm 2013, 321460 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Ding, Y. et al. Enhanced neuroprotection of acetyl-11-keto-β-boswellic acid (AKBA)-loaded O-carboxymethyl chitosan nanoparticles through antioxidant and anti-inflammatory pathways. Mol. Neurobiol. 53, 3842–3853 (2015).

    PubMed  Article  CAS  Google Scholar 

  • Loboda, A., Damulewicz, M., Pyza, E., Jozkowicz, A. & Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evalutionarily conserved mechanism. Cell. Mol. Life Sci 73, 3221–3247 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lee, J. M. et al. Nrf2, a multi-organ protector?. FASEB J 19, 1061–1066 (2005).

    PubMed  Article  CAS  Google Scholar 

  • Jeon, T. I. et al. Antioxidative effect of chitosan on chronic carbon tetrachloride induced hepatic injury in rats. Toxicology 187(1), 67–73 (2003).

    CAS  PubMed  Article  Google Scholar 

  • El-Denshary, E. et al. Possible synergistic effect and antioxidant properties of Chitosan nanoparticles and quercetin against carbon tetrachloride-induce hepatotoxicity in rats. Soft Nanosci. Lett. 5, 36–51 (2015).

    Article  Google Scholar 

  • Sun, T., Zhou, D., Xie, J. & Mao, F. Preparation of Chitosan oligomers and their antioxidant activity. Eur. Food Res. Technol. 225, 451–456 (2007).

    CAS  Article  Google Scholar 

  • Rajalakashmi, A., Krithiga, N. & Jayachitra, A. Antioxidant activity of the chitosan extracted from Shrimp Exoskeleton. Middle-East J. Sci. Res 16(10), 1446–1451 (2013).

    Google Scholar 

  • Schreiber, S. B., Bozell, J. J., Hayes, D. G. & Zivanovic, S. Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocolloids 33(2), 207–214 (2013).

    CAS  Article  Google Scholar 

  • Tao, W. et al. Chitosan oligosaccharide attenuates nonalcoholic fatty liver disease induced by high fat diet through reducing lipid accumulation, inflammation and oxidative stress in C57BL/6 mice. Mar. Drugs 17(11), 645 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  • Kim, J., Cha, Y. N. & Surh, Y. J. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. Fund. Mol. Mech. Mutagen 690, 12–23 (2010).

    CAS  Article  Google Scholar 

  • Fong, D., Ariganello, M. B., Girard-Lauziere, J. & Hoemann, C. D. Biodegradable chitosan microparticles induce delayed STAT-1 activation and lead to distinct cytokine responses in differentially polarized human macrophages in vitro. Acta Biomater. 12, 183–194 (2015).

    CAS  PubMed  Article  Google Scholar 

  • Monacelli, F. et al. Aging and Alzheimer’s disease. Nutrients 9, 670 (2017).

    PubMed Central  Article  CAS  Google Scholar 

  • Macan, A. M., Kraljević, T. G. & Raić-Malić, S. Therapeutic perspective of vitamin C and its derivatives. Antioxidants 8, 247. https://doi.org/10.3390/antiox8080247 (2019).

    CAS  Article  Google Scholar 

  • Jialal, I. & Singh, U. Is vitamin C an anti-inflammatory agent?. Am. J. Clin. Nutr. 83(3), 525–526 (2006).

    CAS  PubMed  Article  Google Scholar 

  • Chio, C. C., Chang, Y. H., Hsu, Y. W., Chi, K. H. & Lin, W. W. PKA-dependent activation of PKC, p38 MAPK and IKK in macrophage: Implication in the induction of inducible nitric oxide synthase and interleukin-6 by dibutyryl cAMP. Cell Signal 16, 565–575 (2004).

    CAS  PubMed  Article  Google Scholar 

  • Zhang, N. et al. Protective effects and mechanisms of high-dose vitamin C on sepsis-associated cognitive impairment in rats. Sci Rep 11, 14511. https://doi.org/10.1038/s41598-021-93861-x (2021).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Leave a Reply

    Your email address will not be published.